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Abstract

The effects of climate policies are often studied under perfect competition and
constant marginal extraction costs. In this paper, we allow for monopolistic fossil
fuel supply and more general cost functions, which, in the presence of perfectly
substitutable renewables, gives rise to limit-pricing behavior. Four phases of supply
may exist in equilibrium: sole supply of fossil fuels below the limit price, sole
supply of fossil fuels at the limit price, simultaneous supply of fossil fuels and
renewables at the limit price, and sole supply of renewables at the limit price. The
consequences of climate policies for initial extraction depend on the initial phase:
in case of sole supply of fossil fuels at the limit price, a renewables subsidy increases
initial extraction, whereas a carbon tax leaves initial extraction unaffected. With
simultaneous supply at the limit price or with sole supply of fossil fuels below the
limit price, a renewables subsidy and a carbon tax lower initial extraction. Both
policy instruments decrease cumulative extraction. If fossil fuels and renewables
are imperfect but good substitutes, the monopolist will exhibit ‘limit-pricing resem-
bling’ behavior, by keeping the effective price of fossil close to that of renewables
for considerable time.
JEL codes: Q31, Q42, Q54, Q58
Keywords: limit pricing, non-renewable resource, monopoly, climate policies



1 Introduction

It is well known from the Green Paradox literature (cf. Sinn, 2008, 2012; Van der

Ploeg and Withagen, 2015) that climate policies such as subsidies on renewables or

rapidly increasing carbon taxes may turn out to be counterproductive in a competitive

but otherwise second-best world. When fossil fuels are traded competitively, upon the

introduction of these climate policies owners of fossil fuel resources will supply more

fossil fuel at the outset (Weak Green Paradox) and may extract faster over time so that

also accumulation of carbon in the atmosphere is accelerated, and damages caused by

climate change are increased (Strong Green Paradox). Since the market for oil, an

important type of fossil fuel, can hardly be characterized as competitive, the question

arises whether this pessimistic outcome will also be obtained under alternative market

structures. This is the issue we address in this paper.

In order to investigate the impact of policy instruments, we first have to derive

the equilibrium on the energy market. In the seventies of the previous century the

equilibrium has been characterized for several specific market structures. See Stiglitz

and Dasgupta (1982) for a survey. We restrict ourselves here to a monopolist that

owns a non-renewable resource, and is facing a competitive fringe of suppliers of a

renewable resource. Renewables can be produced at constant marginal cost, which

puts an upper limit on the price the monopolist can charge its customers. This gives

rise to the possibility of a limit-pricing strategy by the monopolist, which consists of

setting the price equal to (or marginally below) the marginal cost of producing the

backstop.

Hoel (1978a,b) was the first to show that limit pricing may prevail in equilibrium, in

case of constant marginal extraction costs. He also shows that with iso-elastic demand

and zero extraction costs the existence of a perfect substitute implies that the initial

price set by the monopolist is higher than it would be without the substitute. Moreover,

the lower the price of the substitute, the lower initial extraction, at least if the initial

price set by the monopolist is below the substitute’s price, i.e., if there is no limit pricing

from the start. The same case is treated by Stiglitz and Dasgupta (1982, pp. 145-146).

The phenomenon of limit pricing was also found by Salant (1979), who considered

extraction costs that are strictly convex in the rate of extraction.

Gilbert and Goldman (1978) and Hoel (1983) show that any threat of entry en-
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courages the monopolist to charge a higher initial price than without the threat. More

recently, Andrade de Sá and Daubanes (2016) have argued that, with constant marginal

extraction costs, limit pricing will occur throughout if demand for energy is inelastic.

Finally, Wang and Zhao (2013, 2015) pay attention to a monopolist facing two com-

petitive backstops. One, e.g., biofuel, has a capacity constraint in such a way that it

cannot meet by itself total demand at the backstop price. The other, e.g., solar, has no

capacity constraint, but is more expensive to produce. All marginal costs are constant.

Wang and Zhao (2015) perform a comparative statics analysis with regard to policy

instruments, such as a subsidy on biofuel.

The objective of the present paper is threefold. Firstly, we consider the limit-pricing

problem allowing simultaneously for stock-dependent and convex extraction costs.1

Furthermore, we allow both for elastic and inelastic energy demand. We are able

to show that there still is a final period of time with limit pricing and that part of

this limit-pricing phase may be characterized by simultaneous supply of fossil fuels

and renewables. Moreover, we identify the conditions under which there is limit

pricing throughout. Secondly, we relax the unrealistic assumption made in the previous

literature of perfect substitutability of fossil fuels and renewables (cf. Papageorgiou

et al., 2017). We show that for large enough elasticities of substitution the price

path comes close to the path for perfect substitutability. Moreover, with imperfect

substitution a distinction needs to be made between the price elasticity of energy

demand and that of fossil fuel demand. Actually, the monopolist will always supply

fossil fuel at a point of elastic demand for fossil. Hence, the issue of inelastic demand

in reality should be seen from a modified perspective. Thirdly, we are particularly

interested in the effect of policy measures such as a carbon tax or a renewables subsidy.

We find that such effects crucially depend on whether or not there is limit pricing with

or without simultaneous use from the start.

Our analysis has some limitations. We do not consider strategic interaction, such

as a strategic game between a monopolistic supplier and a monopsonistic group of

demanders (cf. Liski and Tahvonen, 2004; Kagan et al., 2015), or a differential game

between a resource monopolist and a producer of a backstop that becomes cheaper

1Hart (2016) argues that extraction costs of petroleum are increasing in cumulative extraction.
Anderson et al. (2018) refer to Hyne (2012) to justify their assumption that the unit costs of drilling
additional wells is increasing in the industry-wide drilling rate.
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over time due to investments (cf. Jaakkola, 2019). We also do not study the more

realistic setting in which part of the global resource stock is owned by a competitive

fringe. See Groot et al. (1992) for the case without and Benchekroun et al. (2017)

for the case with a backstop technology. Following Fischer and Salant (2017), we

furthermore abstract from dirty backstops (cf. Michielsen, 2014) and interpret the

backstop technology as being able to produce biofuels or to enable the electrification

of transport in combination with technologies that generate clean electricity, such as

wind and solar. Moreover, we do not allow for heterogeneity of climate change policies

across fossil fuel consuming countries. Hence, here we do not address issues like spatial

carbon leakage under monopoly. This is considered in Van der Meijden et al. (2018).

Finally, we do not perform a welfare analysis of policy interventions (cf. Dasgupta and

Heal, 1979; Van der Ploeg and Withagen, 2015).

In the next section, we introduce the model, derive the main results and compare

them to what others have found. We give a full characterization of the optimum for the

monopolist and perform a policy analysis. Section 3 extends the model with imperfect

substitutability. Section 4 concludes.

2 The model

We consider a two-country model. One country derives welfare from the use of energy.

Energy comes from fossil fuel, that is supplied by a monopolist located in the other

country, or from a renewable resource that is supplied competitively. Production of

renewable energy has constant marginal costs. We abstract from set up costs and

capacity constraints in renewables production. For the time being, we assume fossil

fuel and renewables to be perfect substitutes. This assumption will be relaxed in

Section 3. The importing country’s government imposes a constant carbon tax on the

domestic consumption of fossil fuel. This can be justified by linear climate damages.

We also assume a constant unit subsidy on renewables—as we often observe second-

best climate policies such as subsidies on solar or wind energy in practice—and that

the consumer country’s government can commit itself to this constant subsidy from the

beginning.
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2.1 Energy demand and supply

The inverse demand function for energy is pe(q(t) + x(t)), where pe(t) denotes the

consumer price of energy, and q(t) and x(t) denote demand for fossil fuel and for

renewables, respectively, at instant of time t. The producer price of fossil fuel is denoted

by p(t). The tax per unit of fossil fuel use is τ , the cost of producing energy from

renewables is b, and the subsidy per unit of the renewable resource is σ. In equilibrium,

both supply of fossil fuel and of renewables is equal to demand. Hence, we denote fossil

fuel and renewables supply again by q(t) and x(t), respectively. Supply of and demand

for renewables is zero if the consumer price of fossil fuel pc(t) ≡ p(t) + τ is below

the consumer price of renewables, i.e., if pc(t) < b − σ or p(t) < b − σ − τ ≡ b̂. If

the producer price p(t) equals b̂, we get pc(t) = b − σ, implying that the consumer

is indifferent between the two sources of energy. The monopolist sets the price as

well as its own supply, thereby leaving residual demand to the competitive suppliers of

renewables. Energy demand at producer price b̂ is denoted by q̂. With S(t) being the

fossil fuel stock at instant of time t, net instantaneous profits of the monopolist are2

Π(q(t), x(t), S(t)) = p(q(t) + x(t))q(t)− C(q(t), S(t)),

where C is the extraction cost function. We assume Cq(q, S) ≥ 0, CS(q, S) ≤ 0,

CSS(q, S) ≥ 0, CqS(q, S) ≤ 0, meaning that extraction costs weakly increase in the

extraction rate, weakly decrease in the stock size, and that for a given extraction

rate (resource stock) the marginal costs weakly increase (decrease) if the remaining

resource stock becomes smaller. The initial stock is denoted by S0. We assume Π is

well-defined, strictly concave in q and continuously differentiable for q ≥ q̂. In addition,

to have an interesting problem we only consider initial stocks such that there exists a

price not larger than b̂ and an extraction rate such that profits are positive.

It will be shown in the sequel that the equilibrium typically consists of three phases.

Initially, from time 0 until time T1, the monopolist supplies at a consumer price below

the net renewables price b−σ, so that p(t)+τ < b−σ (or p(t) < b̂); then, from T1 on the

producer price is set equal to b̂, whereas q(t) > 0 for some interval of time [T1, T3) with

T3 > T1. The limit-pricing phase consists of two sub-phases. One phase, from T1 until

2Note that the producer price p is also dependent on the tax rate τ , as p(q + x, τ) = pe(q + x) − τ .
However, for notational brevity we write p(q + x) instead of p(q + x, τ).
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T2, where the extraction rate is equal to q̂ such that the monopolist captures the entire

market. And a final phase, from T2 until T3 where the monopolist allows renewables

on the market, implying simultaneous supply of fossil fuel and renewables at the limit

price. Hence, in contrast to the case of extraction costs that are linear in the extraction

rate, a limit-pricing strategy is not necessarily meant to keep renewables producers at

bay. All phases can be degenerate, but the optimum always features at least one of the

two limit-pricing sub-phases. We use T3 generically as the final instant of time where

there is fossil fuel supply. After T3 only renewables are produced and supplied.

2.2 The monopolist’s problem

The monopolist needs to take into account that the price it sets should not exceed b̂,

because otherwise all demand is met by renewables. It should also take into account

that total demand is to met by fossil fuel and renewables. Hence, the monopolist’s

problem is to find a path of extraction rates, supply of renewables and a final time of

fossil fuel supply, T3, such that its profits are maximized. Hence

max
T3, q(t), x(t)

T3∫
0

e−rt(p(q(t) + x(t))q(t)− C(q(t), S(t)))dt, (1)

subject to the resource constraint

Ṡ(t) = −q(t), S(t) ≥ 0, S(0) = S0, q(t) ≥ 0, (2a)

the condition that the producer price does not exceed the limit price

p(q(t) + x(t)) ≤ b̂, (2b)

and the nonnegativity of renewables supply

x(t) ≥ 0. (2c)

Here, r is the constant rate of interest. Note that we can do as if the monopolist also

decides on the supply of renewables. From here on we omit the time argument when

there is no danger of confusion.
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The Hamiltonian H and the Lagrangian L of the problem read

H(q, x, S, λ, t) = e−rt(p(q + x)q − C(q, S)) + λ[−q],

L(q, x, S, λ, µ, t) = e−rt(p(q + x)q − C(q, S)) + λ[−q] + µ[b̂− p(q + x)] + νx.

According to the Maximum Principle, the Lagrangian is maximized with respect to q

and x, implying

e−rt(p′(q + x)q + p(q + x)− Cq(S, q)) = λ+ µp′(q + x) if q > 0, (3a)

e−rtp′(q + x)q = µp′(q + x)− ν, (3b)

and, along the optimal path, the evolution of the shadow price satisfies

−λ̇ = −e−rtCS(q, S). (3c)

At T3, the time at which extraction stops, the transversality conditions read

H(q(T3), x(T3), S(T3), λ(T3), T3) = e−rT3(p(q(T3) + x(T3))q(T3)− C(q(T3), S(T3)))

− λ(T3)q(T3) = 0, (4a)

λ(T3)S(T3) = 0. (4b)

Finally, the complementary slackness conditions are

µ[b̂− p(q + x)] = 0, µ ≥ 0, b̂ ≥ p(q + x), (5a)

νx = 0, ν ≥ 0, x ≥ 0. (5b)

We first show that there is always a final interval of time with limit pricing, i.e., with

p = b̂. Actually there might be limit pricing throughout. To give an example, let us

define the consumer price elasticity of demand as

εc(q + x) ≡ −
(
d[p(q + x) + τ ]

dq

q

p(q + x) + τ

)−1

,
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and the producer price elasticity of demand as

εp(q + x) ≡ −
(
dp(q + x)

dq

q

p(q + x)

)−1

= εc(q + x) p(q + x)
p(q + x) + τ

.

The difference is in the carbon tax to be paid by the consumer. We can then rewrite

(3a) as

e−rt
[(

1− 1
εp(q + x)

)
p(q + x)−Gq(S, q)

]
= λ+ µp′(q + x).

With inelastic demand (i.e., εc(q) < 1 and thus εp(q) < 1, for all q ≥ q̂) the term between

brackets is negative and there is limit pricing throughout, because µ is necessarily

strictly positive then. Intuitively, if demand is inelastic the profit maximizing monopolist

optimally chooses the highest possible price at any point in time. For the case of a

non-renewable resource monopoly with inelastic demand, this result was derived by

Andrade de Sá and Daubanes (2016). Proposition 1 describes the outcome for the

more general case we investigate here.

Proposition 1 (Limit pricing) There always exists a final limit-pricing phase.

Proof. We will show that there exist T1 and T3 with T3 > T1 ≥ 0 such that p(t) = b̂ for

all T3 ≥ t ≥ T1 and q(t) = 0 for all t > T3. Suppose p(t) < b̂ for all t < T3. We first show

that p(T3) = b̂. If p(T3) < b̂ then q(T3) > q̂ > 0 and x(T3) = 0. Hence, from (3a),

e−rT3(p′(q(T3))q(T3) + p(q(T3))− Cq(S(T3), q(T3))) = λ(T3), (6a)

and from (4a)

e−rT3(p(q(T3))− C(S(T3), q(T3))/q(T3)) = λ(T3). (6b)

But this violates the strict concavity of the instantaneous profit function in q.

The Hamiltonian evaluated at the optimum is continuous. Since the Hamiltonian

equals zero at T3 it must approach zero as t approaches T3. Suppose p(t) < b̂ for interval

(T1, T3). We have p(t)→ b̂, q(t)→ q̂ as t→ T3 so that

λ(t)→ e−rT3(p′(q̂))q̂ + b̂− Cq(S(T3), q̂)) as t→ T3.
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But from (4a)

e−rT3(b̂− C(S(T3), q̂)/q̂ = λ(T3). (7)

So that we have a contradiction with strict concavity in q again, implying that there

must be a final interval with p = b̂. �

Hoel (1978a,b) shows the occurrence of limit pricing with constant marginal extraction

cost. This result was also obtained by Salant (1979) for cost functions that are linear

or strictly convex in the rate of extraction, but stock-independent. Andrade de Sá and

Daubanes (2016) assume C(q, S) = c(S)q. Hence, the novelty of our finding lies in a

generalization with respect to the cost function.

Intuitively, without a regime of limit pricing, marginal profits of the last resource

unit sold just before depletion of the stock at instant of time T3 would be smaller than

the price of renewable energy, which is the price the monopolist could get when selling

this last unit directly after T3 instead. Therefore, the monopolist always prefers a final

regime with the price equal to the unit cost of renewables.

Another general result is that a final phase with simultaneous use exists in case the

cost function is strictly convex in extraction.3

Proposition 2 (Simultaneous use) A final limit-pricing phase with simultaneous use of

the resource and renewable energy exists if and only if C(S, q) is strictly convex in q.

Proof. We will first show that q(T3) = 0. Suppose q(T3) > 0. Then it follows from (4a)

that

λ(T3) = e−rT3
(
b̂− C(S(T3), q(T3))/q(T3)

)
.

It follows from (3a) and (3b) that

λ(T3) = e−rT3(b̂− Cq(S(T3), q(T3)))− ν(T3).
3Due to the presumed linearity of their cost function, Hoel (1978a,b) and Andrade de Sá and

Daubanes (2016) do not get simultaneous use, contrary to Salant (1979) who works with a cost function
that is strictly convex in extraction.
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Hence

e−rT3

(
C(S(T3), q(T3))

q(T3) − Cq(S(T3), q(T3))
)

= ν ≥ 0. (8)

But if the cost function is strictly convex in the extraction rate, this is ruled out.

Therefore, q(T3) = 0, which by continuity implies that a final regime with simultaneous

use exists, except at t = T3. Finally, if there is simultaneous supply the cost function

cannot be linear in the extraction rate. �

Intuitively, if the monopolist would extract a strictly positive amount and sell it at the

limit price just before depletion at instant of time T3, profits could be increased by

conserving a marginal unit and extract it at lower marginal costs directly after T3. In

other words, due to strict convex extraction costs it becomes profitable to smooth out

extraction over time. Hence, in the case at hand ‘limit pricing’ should no longer be

interpreted as serving the goal of preventing the renewable substitute from entering

the market altogether.

The next proposition deals with the possibility of stranded assets.

Proposition 3 (Stranded assets) If the condition b̂ − Cq(S(T3), 0) = 0 has a solution

with S(T3) > 0, this amount remains unexploited.

Proof. If S(T3) > 0 then λ(T3) = 0 from (4b). It follows from (4a) that

b̂q(T3) = C(q(T3), S(T3)).

Hence, profits are zero and zero extraction is optimal, meaning zero extraction is as

good as any positive rate of extraction, implying ν(T3) = 0. We then have from the

optimality conditions (3a) and (3b) that

b̂− Cq(S(T3), 0) = 0.

Given our concavity assumptions, it also holds that if this equation has a positive

solution with S(T3) > 0, this amount remains unexploited. �
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Intuitively, if marginal extraction costs reach the unit price of renewable energy once

the remaining stock reaches the threshold value S(T3), the remaining reserves are too

expensive to exploit profitably, implying that they will remain untapped.

Andrade de Sá and Daubanes (2016, appendix) allow for stock-dependent extrac-

tion costs that are linear in extraction. They examine, with their assumption of inelastic

demand, the effect of climate policies and show that there still will be limit pricing

throughout. We have more general extraction cost and demand functions and we get

more results for our specific example in Case 3 later in this section.

We illustrate the outcomes for several cost specifications and provide additional

insights by means of three special cases.

Case 1: Linear stock-independent extraction costs. Suppose C(q, S) = kq with 0 ≤

k < b̂. Hence extraction costs are linear in the extraction rate and stock-independent.

This is a special case of the model in Van der Meijden et al. (2018). Along an optimal

path the resource will be completely depleted. Moreover, along the final phase of limit

pricing the extraction rate is q̂, because discounting induces the monopolist to extract

as fast as possible, given that it is constrained by the price b̂. This, together with the

constancy of the shadow price λ, implies from (4a) that

λ = e−rT3(b̂− k).

Now suppose that limit pricing starts at T1 > 0, so that there is an initial phase with the

price below b̂. Then it follows from (3a) with µ(T1) = 0 that

λ = e−rT1(p′(q̂)q̂ + b̂− k).

Hence,

b̂− k
p′(q̂)q̂ + b̂− k

= erT3−rT1 . (9)

Provided that p′(q̂)q̂+ b̂−k > 0, this yields the length of the limit-pricing phase. In order

to determine the optimum, the initial stock has to be taken into account. Let us define

the critical stock Ŝ = (T3 − T1)q̂. If the initial stock is smaller than Ŝ the equilibrium is
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one with limit pricing from the start. If the initial stock is larger than Ŝ then there will

be an initial phase with the price below the limit price b̂. However, if p′(q̂)q̂ + b̂− k ≤ 0

(which holds, e.g., for inelastic demand) it is optimal to have limit pricing from the

start, irrespective of the initial stock size.

Case 2: Strictly convex stock-independent extraction costs. Next we consider the

case of extraction costs that are still stock-independent, but strictly convex in the

extraction rate: C(S, q) = c(q) with cqq(q) > 0. We assume that b̂ > cq(0). This is

the case studied by Salant (1979). We will show that the optimum typically consists

of three phases. Phase 1 runs from time zero until time T1 and has a price smaller

than b̂. Then follows an interval of time from T1 until T2 with limit pricing and the

monopolist serving the entire market. Finally there is a phase, from T2 until T3 with

simultaneous supply of fossil and renewables at the limit price, where the extraction

rate is declining to zero over time. We will show this by constructing the path and

prove that it satisfies all the necessary conditions and is therefore optimal in view of

our concavity assumptions.

In the proposed optimum along (T2, T3) we have p(t) = b̂, q̇(t) < 0 and, hence,

ẋ(t) > 0. Moreover, q(T2) = q̂ and q(T3) = 0. Therefore (3a)-(3b) imply

λ = e−rT3(b̂− cq(0)), (10a)

λ = e−rT2(b̂− cq(q̂)), (10b)

which gives the length of the final limit-pricing phase. We can then determine total

extraction along the interval by putting T2 = 0. If the actual initial stock is smaller

than this level, it is optimal to start with limit pricing, with a smaller initial extraction

rate than q̂. If the actual stock is larger, then there is room for a first limit-pricing phase

along which q(t) = q̂. The critical initial resource stock for having an initial phase where

the price is below the limit price is determined as follows. At T1 it holds by continuity

from (3a) that:

λ = e−rT1(p′(q̂)q̂ + b̂− cq(q̂)). (10c)

Hence, provided that p′(q̂)q̂ + b̂− cq(q̂) > 0, the duration of the first limit-pricing phase

12



is given by

erT2−rT1 = b̂− cq(q̂)
p′(q̂)q̂ + b̂− cq(q̂)

.

Since we already know how much is needed in the second limit-pricing phase we can

now determine the critical stock needed to have T1 > 0. If the actual stock is larger

than this stock then indeed T1 > 0.

We further illustrate this case by considering an example with quadratic extraction

costs and linear demand, C(q, S) = c(q) = kq + 1
2ψq

2 and p(q + x) = α − τ − β(q + x),

respectively. By using (10a)-(10c) we obtain

e−rT3(b̂− k) = λ, (11a)

e−rT2 [b̂− (k + ψq̂)] = λ, (11b)

e−rT1 [−βq̂ + b̂− (k + ψq̂)] = λ. (11c)

The duration of the two limit-pricing phases crucially depends on the convexity of the

extraction cost function, which is governed by ψ. Let us define ψ̃ by b̂− k− ψ̃q̂−βq̂ = 0

and ψ̂ by b̂ − k − ψ̂q̂ = 0. Hence, ψ̃ is the value of ψ for which the marginal profit

equals zero if the monopolist would serve the entire market at the limit price. It is clear

from (11c) that T1 → 0 if ψ → ψ̃, because the monopolist will perform a limit-pricing

strategy throughout. Condition (11b) implies that T2 → 0 if ψ → ψ̂, meaning that

the limit-pricing phase without renewables production vanishes: due to highly convex

extraction costs it is too expensive for the monopolist to serve the entire market at the

limit price. Furthermore, note from (11a)-(11b) that T3 → T2 if ψ → 0: the limit-

pricing phase with simultaneous use vanishes if extraction costs become linear, as in

Case 1.

To illustrate the effect of convex extraction costs and the interest rate on the resource

extraction path, and in particular on the duration of the different phases of extraction,

we conduct a simulation analysis.4 We choose the parameters of our model such that

the benchmark equilibrium results in initial extraction of 32 billion barrels of oil and an

initial oil price of 82 dollars per barrel, in line with the average crude oil consumption

4The derivation of the resource constraint that, together with (11a)-(11c), can be used to solve for
the equilibrium is shown in Appendix A.1.
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and crude oil price over the last decade (EIA, 2017)). The benchmark parameter values

are: α = 120, β = 1.2, b = 100, k = 18, ψ = 0.5, σ = τ = 0 (all in terms of US $ per

barrel of oil), r = 0.028, and S0 = 1650 (billion barrels of oil).

Figure 1: Resource extraction paths

Panel (a) - Effect of cost convexity Panel (b) - Effect of the interest rate
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Notes: Panel (a) shows the effect of changes in the extraction cost convexity parameter, ψ. The solid,
dashed and dotted curves are the equilibrium time paths for ψ = 0.5, ψ = 2, and ψ = 3, respectively.
Panel (b) shows the effect of the interest rate, r. The solid, dashed and dotted curves are the equilibrium
time paths for r = 0.028, r = 0.005, and r = 0.075, respectively.

Figure 1 shows the extraction time profile for different values of the extraction cost

convexity parameter, ψ, (panel (a)) and of the interest rate, r, (panel (b)). In all

scenarios shown in the figure, the equilibrium starts with sole supply of fossil fuel

at a price below the limit price, with extraction declining over time. Subsequently,

there is a limit-pricing phase with sole supply of fossil and constant extraction over

time. The final phase is characterized by simultaneous supply of fossil and renewables

at the limit price, and declining extraction over time. In panel (a) the solid curve

corresponds to the ‘weakly convex’ benchmark scenario with ψ = 0.5. The dashed

and dotted curves represent the ‘medium convex’ and the ‘highly convex’ scenario with

ψ = 2 and ψ = 3, respectively. The curves clearly show that the duration of the

second limit-pricing phase (featuring simultaneous use of the resource and renewables)

increases with the convexity of extraction costs. In panel (b), the solid curve represents

the benchmark scenario with r = 0.028. The dashed (dotted) curve corresponds to a

scenario with a relatively low (high) interest rate of r = 0.005 (r = 0.075). The figure

makes clear that the duration of the limit-pricing phase with simultaneous use depends
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negatively on the interest rate, because smoothing out extraction over time (induced by

convex extraction costs) implies postponing revenues, which becomes more costly if the

interest rate is high. Similarly, an increase in the interest rate lowers the duration of the

limit-pricing phase during which the monopolist serves the entire market. The reason

is that postponing extraction from the beginning until the end of the limit-pricing phase

is more costly if the interest rate is higher.

Case 3: Stock-dependent extraction costs. Finally, we consider the case of stock-

dependent extraction costs. To give an example, let us generalize the quadratic extrac-

tion cost function to

C(S, q) =
kq + 1

2ψq
2

S
. (12)

As demonstrated in Proposition 2 whether or not some of the resource is left unex-

ploited depends on the solution of the following equation:

Cq(S, 0) = k

S
= b̂. (13)

If k > 0, (13) has a positive solution for S, so that this amount is left unexploited.

Clearly, if the actual initial stock is smaller then nothing will be exploited. If, however,

k = 0 then nothing is left in the ground.

Appendix A.2 shows how to find the initial stock such that it is optimal to start with

an extraction rate q̂ and let extraction decrease over time, and the largest initial stock

such that the equilibrium starts with limit pricing.

2.3 Policy analysis

The existing literature on monopoly and limit pricing is scarce and mainly addresses the

effect of changes in the renewables price on limit pricing in special cases. Only a few

papers pay attention to the effect of policy instruments under monopolistic resource

extraction: Andrade de Sá and Daubanes (2016) consider the case with inelastic fossil

fuel demand and Van der Meijden et al. (2018) impose linear, stock-independent extrac-

tion costs. Policy analysis is relevant in view of the Green Paradox. This branch of the

literature (cf. Sinn, 2008, 2012; Van der Ploeg and Withagen, 2015) is concerned with
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the problem that climate policy instruments may be counterproductive. For example, it

could be that a subsidy on renewables leads the owners of fossil fuel reserves to extract

faster initially and deplete fossil fuels sooner, thereby aggravating the climate problem.

This result is obtained in many models with perfect competition on the energy market.

Here we address the question how the effectiveness of climate policies works out in the

case of a monopoly.

In the Green Paradox literature a distinction is made between the Weak Green

Paradox, which occurs if initial extraction goes up, and the Strong Green Paradox, which

is said to occur if total climate damages go up (cf. Gerlagh, 2011). For completeness

we also study the effect of (exogenous) technological change that leads to a lower

cost of producing the backstop technology b. This is different from assuming a gradual

decline in the backstop cost as examined by Fischer and Salant (2017). We will consider

marginal changes in parameters. With non-marginal changes different results can be

obtained. For example, the subsidy on renewables can be set such that renewables

become cheaper than fossil fuel.

The next proposition considers the effect of climate policies on initial extraction

for the three possible cases in which the optimum starts with (i) a limit-pricing phase

featuring simultaneous supply of fossil and renewables, (ii) a limit-pricing phase in

which the monopolist serves the entire market, and (iii) the phase in which the resource

price is strictly below the price of renewables, respectively.5

Proposition 4 (Climate policies and initial extraction)

(i) Suppose the monopolist initially sets the limit price, but does not serve the entire

market, i.e., q(0) < q̂, T1 = T2 = 0, T3 > 0. Then

(a) the initial extraction rate decreases if b marginally decreases or if σ marginally

increases.

(b) the initial extraction rate decreases if τ marginally increases.

(ii) Suppose the monopolist initially sets the limit price and serves the entire market, i.e.,

q(0) = q̂, T1 = 0, T2 > 0, T3 > 0. Then

5Part (ii) of Proposition 4 resembles results obtained by Andrade de Sá and Daubanes (2016), for the
case of linear extraction costs and a price elasticity of demand below unity. We show that the result holds
in any limit pricing phase, under more general assumptions.
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(a) the initial extraction rate increases if b marginally decreases or if σ marginally

increases.

(b) the initial extraction rate is unaffected by a marginal change in τ .

(iii) Suppose the monopolist initially sets a price strictly below the unit cost of renewables

(and thus initially serves the entire market), i.e., q(0) > q̂, T1 > 0, T2 > 0, T3 > 0.

Then

(a) the initial extraction rate decreases if b marginally decreases or if σ marginally

increases.

(b) the initial extraction rate decreases if τ marginally increases.

Proof. Part (i): Note that generally

Ḣ = ∂H
∂t

.

Hence

Λ(S0, b, σ, τ) ≡
∫ T3

0
e−rtΠ(q(t), S(t))dt = H(0)−H(T3)

r
= H(0)

r
,

sinceH(T3) = 0 in an optimum. In the case at hand we have ν(0) = 0, because x(0) > 0

by assumption, so that

p′(q(0) + x(0))q(0) = µp′(q(0) + x(0)).

Hence, we can write the Hamiltonian in shorthand as

H(0) = Cq(q(0), S0)q(0)− C(q(0), S0).

Due to the strict convexity of C in q, implied by the proposed equilibrium, H(0) is

increasing in q(0). A decrease in b reduces the profitability of the monopolist. Hence

dΛ(S0, b, σ, τ)/db > 0, implying dH(0)/db > 0. Therefore, dq(0)/db > 0. The same type

of argument applies to changes in the tax rate.

Part (ii): q̂ is total energy demand at a consumer price is p(t)+τ = b−σ. In the case

at hand q(0) = q̂. A decrease in b or an increase in σ stimulate demand. An increase in

17



τ leaves fossil fuel demand unaffected.

Part (iii): As in part (i) we have

Λ(S0, b, σ, τ) ≡
∫ T3

0
e−rtΠ(q(t), S(t))dt = H(0)−H(T3)

r
= H(0)

r
.

We now have µ(0) = 0, because p(0) < b̂ by assumption. Now we use the concavity of

the (entire) profit function to get the result. �

This proposition demonstrates that only in case of limit pricing with the monopolist

supplying the entire market from the beginning (part (ii)), we obtain a Weak Green

Paradox upon a decrease in b − σ. In the two other cases (part (i) and part (iii)), the

opposite of the Weak Green Paradox occurs: a decrease in b−σ lowers initial extraction.

In part (i), where the monopolist sets the limit price but does not supply the entire

market, the reason for the reversal of the Weak Green Paradox is that the climate

policies lower marginal profits of the monopolist, who responds by smoothing out

extraction over time to lower extraction costs.

In part (iii), where the optimum starts with a phase during which the monopo-

list sets a price strictly below the price of renewables, we also obtain a decrease in

extraction upon more stringent climate policies. The intuition for the case of the

decline in b or an increase in σ, which affect future profits of the monopolist, is as

follows. Suppose that, upon a decrease in b̂, the monopolist keeps the price path

until the moment at which the price reaches the new, reduced, b̂ unchanged. Then,

cumulative extraction and discounted profits until this moment remain unchanged as

well. However, discounted profits after this moment go down, due to the lower b̂.6

Therefore, the monopolist optimally responds by smoothing out cumulative extraction

until this moment over a longer time horizon. This implies that the initial price rises

and initial extraction falls. In so doing, the monopolist postpones the start of the era

with reduced discounted profits.

Figure 2 shows the effect of a carbon tax and a renewables subsidy in these latter

two scenarios on the entire extraction path, for the quadratic extraction cost setting

discussed in Case 2. Panel (a) shows the scenario in which the optimum starts with

6Technically, this would imply a downward jump in the Hamiltonian at the instant of time at which
p(t) = b̂.
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simultaneous supply of fossil fuel and renewables at the limit price. In panel (b), the

monopolist initially sets a price strictly lower than the per unit price of renewables.

Figure 2: Effect of climate policies

Panel (a) - Start with p(0) = b̂, q(0) < q̂ Panel (b) - Start with p(0) < b̂, q(0) > q̂
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Notes: Panel (a) shows the case with an initial limit-pricing phase in which there is simultaneous supply
of fossil fuel and renewables at the limit price. The dashed line shows the effect of a carbon tax (or
renewables subsidy, which is similar). Panel (b) shows the case in which only fossil is supplied initially
at a price strictly below the price of renewables. The dashed (dotted) line shows the effect of a carbon
tax (renewables subsidy). Parameters are set at their benchmark values (see Section 2.2), except for the
initial resource stock in panel (a), which is reduced to 30 in order to get T1 = T2 = 0.

The figure clearly shows that in both scenarios, extraction goes down upon the

strenghtening of climate policies. In panel (a), both the carbon tax and the renewables

subsidy increase the time at which the stock is depleted. In panel (b), however, a renew-

ables subsidy speeds up, whereas a carbon tax slows down, depletion. Furthermore,

panel (b) shows that when the optimum starts with an initial phase in which fossil

fuel is cheaper than renewable energy, a renewables subsidy substantially increases

intermediate extraction, after the initial fall. The reason is that the limit-pricing phase

in which the monopolist serves the entire market starts earlier and is characterized by

a higher extraction rate.

The next proposition examines the effect of climate policies on stranded assets.

Proposition 5 (Climate policies and stranded assets) If b̂ − Cq(S(T3), 0) = 0 has a

solution with S(T3) > 0, a lower renewables cost, a higher renewables subsidy or a higher

tax all induce the monopolist to leave more fossil fuel untapped.

Proof. If the condition b̂ − Cq(S(T3), 0) = 0 has a solution with S(T3) > 0, part of the
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stock will remain untapped, by Proposition 3. Since CqS < 0 we obtain an increase in

S(T3) if b falls, if σ increases, or if τ increases. �

Hence, technological change and climate policies will lower the cumulative amount

of carbon emissions, by inducing the monopolist to leave a larger share of its reserves

unexploited.

3 Imperfect substitution

Andrade de Sá and Daubanes (2016) argue that demand for energy is price inelastic

and conclude for a model with linear extraction costs that in the equilibrium only limit

pricing occurs. Contrary to their assumption and our assumption thus far (in line with

most of the literature about the transition from fossil fuels to renewables), in reality

fossil fuels and renewables are not perfect substitutes. Papageorgiou et al. (2017)

present evidence that the elasticity of substitution between clean and dirty energy

inputs significantly exceeds unity, but is far from infinitely large (around 2 for the

electricity-generating sector and close to 3 for the non-energy industries). This has

major implications for the equilibrium. To illustrate the consequences of imperfect

substitutability, we consider an example in which utility (or, alternatively, production)

from energy is given by the following CES specification:

U(E) = E1− 1
γ − 1

1− 1
γ

,

where energy (E) is a CES aggregate of fossil fuel q and renewables x:

E(q, x) =
(
δq

ε−1
ε + (1− δ)x ε−1

ε

) ε
ε−1 . (14)

The elasticity of substitution between fossil fuels and renewables is equal to ε. As-

suming quasilinear utility and denoting the composite energy price by pE, consumers

maximize U(E)− pEE, implying that energy demand is given by

E = p−γE , (15)
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from which it can be seen that the (positively defined) price elasticity of energy demand

equals γ. The first-order conditions for fossil and renewables use read

pE
∂E(q, x)
∂q

≤ p+ τ, (16a)

pE
∂E(q, x)
∂x

≤ b− σ, (16b)

with equalities holding if q > 0 and x > 0, respectively. If there is positive demand for

both energy sources, fossil fuel demand can be solved from (14)-(16a), yielding

q(p) =
(
p+ τ

δ

)−γ δ + (1− δ)
(

(p+ τ)/δ
(b− σ)/(1− δ)

)ε−1


γ−ε
1−ε

. (17)

With constant marginal extraction costs k, the problem of the monopolist is to

max
q(t)

∞∫
0

e−rt(p(q(t))− k)q(t)dt subject to Ṡ(t) = −q(t), S(t) ≥ 0, S(0) = S0, (18)

where p(q) is the inverse function of (17). The necessary conditions for the solution to

the monopolist’s problem are provided in Appendix A.3.

Figure 3: Time profiles: the role of the elasticity of substitution

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The solid, dashed and dotted line correspond to the scenarios with ε =∞, ε = 30, and ε = 10, respectively. We have used

γ = 1.07, σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

In order to show the effects of imperfect substitutability, we simulate the model for
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different values of the elasticity of substitution between fossil fuels and renewables.

Figure 3 shows the time profile of the fossil fuel price in panel (a) and of fossil fuel use

in panel (b). The solid curves represent the case in which fossil fuels and renewables

are perfect substitutes (i.e., ε = ∞). For the dashed curves, we have used ε = 30 and

for the dotted curves ε = 10. The figure shows that the time profiles of the price and

use of fossil fuels converge to those under perfect substitutability if the elasticity of

substitution between fossil and renewables is increased. This illustrates the robustness

of our earlier results in which we have assumed perfect substitutability.

As noted by Andrade de Sá and Daubanes (2016) and in Section 2.2 of this paper,

if fossil and renewable energy are perfect substitutes, and extraction costs are linear

and stock-independent, there is a crucial role for the price elasticity of energy demand.

If demand is inelastic, the monopolist will optimally choose a strategy of limit pricing

throughout, which effectively implies choosing the point on the demand curve where

the price elasticity of demand for fossil is infinitely large. In case of a constant elastic

energy demand such as in (15) with γ > 1, the price elasticity of demand for fossil

fuels is constant and equal to the price elasticity of energy demand until the limit-

pricing phase starts, when it jumps to infinity. With imperfect substitutability, however,

the elasticity Φ(p) ≡ −(dq/dp)(p+ τ)/q gradually changes over time. By using (17) we

find

Φ(p) = Ω(p)
1 + Ω(p)γ + 1

1 + Ω(p)ε, with Ω(p) = δ

1− δ

(
(p+ τ)/δ

(b− σ)/(1− δ)

)1−ε

. (19)

Hence, the price elasticity of fossil demand can be written as a weighted average of the

price elasticity of energy demand, γ, and the elasticity of substitution between fossil

fuels and renewables, ε. Moreover, if fossil and renewable energy are close substitutes,

which we assume to be the case, the relative weight of the elasticity of substitution

increases over time as the fossil price rises. To see this, note that by imposing a finite

ε > 1, we ensure that fossil fuels and renewables are good, but imperfect substitutes.

As a result, Ω(p) tends to zero if p becomes infinitely large. Therefore, (19) implies that

the elasticity of fossil demand tends to ε.

Note that, irrespective of the price elasticity of energy demand (which may well

be chosen smaller than unity on empirical grounds), the monopolist always chooses

extraction such that the price elasticity of fossil demand exceeds one. As a result,
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Figure 4: Time profiles: the role of the energy demand elasticity

Panel (a) - Fossil price Panel (b) - Fossil use
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Notes: The solid and dashed lines correspond to the scenarios with γ = 1.05 and γ = 0.8, respectively. The black lines represent

the case with good, but imperfect substitution (ε = 30). The gray lines represent the case with perfect substitution (ε = ∞). We

have used σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

the difference between the case with inelastic and elastic energy demand is less sharp

than it is under perfect substitutability. Figure 4 shows that by moving from elastic

demand (solid gray lines, γ = 1.05) to inelastic energy demand (dashed gray lines,

γ = 0.8) under perfect substitutability, the price and extraction paths in panel (a) and

(b), respectively, change considerably, because in the case with γ = 0.8 there will be

limit pricing throughout. Under imperfect substitution, however, the solid black lines

(γ = 1.05) do not differ drastically from the dashed black lines (γ = 0.8).

Hence, when allowing for imperfect substitution between fossil fuels and renew-

ables, the empirical question whether energy demand is elastic or inelastic becomes

less important than in the case of perfect substitution studied by Andrade de Sá and

Daubanes (2016). Still, the case with monopolistic supply differs considerably from

the case with competitive resource supply. If fossil fuels and renewables are close

substitutes, i.e., if ε is large, Φ(p) will rapidly change with p if the relative effective

price of these energy sources, z ≡ [δ/(1− δ)](p+ τ)/(b− σ), is close to unity. This gives

rise to ‘limit-pricing resembling’ behavior by the monopolistic fossil fuel supplier: if z

comes close to unity, marginal profits will rapidly rise with increases in p. Therefore,

once z comes close to unity, it is profitable for the supplier to keep it close to unity until
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Figure 5: Price elasticity of fossil demand

Panel (a) - Time profile Panel (b) - Elasticity versus price
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Notes: The solid, dashed and dotted line correspond to the scenarios with ε =∞, ε = 30, and ε = 10, respectively. We have used

γ = 1.07, σ = 0, τ = 0, b = 1, k = 0, r = 0.05, and S0 = 76.5.

most of the stock is exhausted. Afterwards, the price will increase, fossil demand will

tend to zero, the elasticity of fossil demand will rapidly increase and marginal profits

will converge to average profits, as in the extreme case of perfect substitutability.

Figure 5 illustrates the development of the price elasticity of fossil demand over time

in panel (a) and its dependence on the effective relative price z in panel (b), for two

different values of the elasticity of substitution between fossil and renewable energy.

The dashed line corresponds with ε = 30 and the dotted line with ε = 10. In both

cases, the price elasticity of fossil demand starts out just above one (indicated by the

flat dotted line in panel (a)) and tends towards ε in the long run.

4 Conclusion

In a general model of non-renewable resource supply by a monopolist (allowing for

stock-dependent extraction costs that are convex in the extraction rate) we have shown

that, if fossil fuels and renewables are perfect substitutes, the equilibrium necessarily

contains a limit-pricing phase. Moreover, if extraction costs are strictly convex in the

extraction rate, at least part of this limit-pricing phase is characterized by simultaneous

supply of the non-renewable resource and the renewable substitute. Hence, a strategy
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of limit pricing is not necessarily meant to keep producers of renewable energy at bay.

It has been shown that the effects of environmental policies, such as a carbon tax

or a renewables subsidy, can be the opposite of what they would be in the case of

perfect competition. In particular, the initial use of fossil fuels can decrease instead of

increase as a consequence of more stringent climate policies. This is not to say that such

policies are less harmful from a social welfare perspective than in the case of perfect

competition: whether or not this is the case depends on the acuteness of climate change

damages.

We have demonstrated that our results are robust to introducing imperfect but good

substitutability between fossil and renewable resources: the monopolist will choose a

‘limit-pricing resembling’ strategy by keeping the effective fossil price just below the

effective renewables price for a considerable period of time. Nevertheless, abrupt

regime shifts from ‘Hotelling pricing’ to ‘limit pricing’ disappear and the empirical

question whether energy demand is elastic or inelastic has less drastic implications

for the fossil price and extraction paths than under perfect substitutability.

In future research, a strategic game in which the fossil importing country sets a

renewables subsidy and the fossil fuel exporter sets its price—both conditional on

the remaining stock—could be introduced. Another promising way to proceed is by

generalizing the analysis to the case of oligopolistic fossil supply. This is an interesting

field of research because of the possibility of strategic interaction among supplying

firms, which is absent in the cases of monopoly and perfect competition.
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Appendix

A.1 Resource constraint

In this Appendix, we derive the resource constraint that, together with (11a)-(11c)

completes the description of the equilibrium in Case II of Section 2.2. By imposing

µ = 0 in (3a) we get

e−rt[−βq(t) + b̂− (k + ψq(t))] = λ, if 0 ≤ t ≤ T1. (A.1a)

Furthermore, by using ν = 0 in (3a)-(3b) we obtain

e−rt[b̂− (k + ψq(t))] = λ, if T2 ≤ t ≤ T3. (A.1b)

During the first limit-pricing phase from T1 until T2, when the monopolist serves the

whole market, we have q(t) = q̂. Using this equation and solving (A.1b) for q, we

obtain the following critical stock levels

Ŝ0 =
∫ T3

T2

b̂− k − λert

ψ
dt = b̂− k

rψ

[
r(T3 − T2)− 1 + e−r(T3−T2)

]
, (A.2a)

S̃0 = Ŝ0 +
∫ T2

T1
q̂dt = Ŝ0 + (T2 − T1)q̂. (A.2b)

If S0 < Ŝ0 we have T1 = T2 = 0 and the monopolist sets p = b̂ from the beginning, but

does not serve the entire market. If Ŝ0 < S0 < S̃0 we get T1 = 0 and the monopolist also

starts with limit pricing (i.e., p = b̂) and initially serves the entire market. If S0 > S̃0 the

initial producer price is below b̂ and, by using (A.1a), the resource constraint requires

S0 = S̃0+
∫ T1

0

α− τ − k − λert

2β + ψ
dt = S̃0+α− τ − k

2β + ψ
+ b̂− k

2β + ψ

(
erT3 − e−r(T3−T1)

)
. (A.3)

Hence, if S0 > S̃0, the resource constraint and (11a)-(11c) can be used to solve for T1,

T2, T3, and λ, which fully describes the equilibrium.
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A.2 Critical stock levels with stock-dependent extraction costs

In this Appendix, we show how to find the initial stock such that it is optimal to start

with an extraction rate q̂ and let extraction decrease over time, and the largest initial

stock such that the equilibrium starts with limit pricing if extraction costs are given by

(12).

Assume that (13) is satisfied. We will first determine the initial stock such that

it is optimal to start with an extraction rate q̂ and let extraction decrease over time.

So, T2 = 0. This is a bit more complicated than in Case 2 (where extraction costs

were stock-independent) because the shadow price is no longer a constant. From the

optimality conditions (3a)-(3c), with x(t) > 0, we have

e−rT2(b̂− Cq(S(T2), q̂)) = λ(T2), (A.4a)

b̂− Cq(S(T3), 0) = λ(T3) = 0, (A.4b)

e−rt(b̂− Cq(S(t), q(t)) = λ(t), T2 < t < T3, (A.4c)

λ̇(t) = e−rtCS(q(t), S(t)), T2 < t < T3, (A.4d)

Ṡ(t) = − q(t), T2 < t < T3. (A.4e)

This yields a second-order differential equation in S. Under the conditions that we have

imposed on the extraction cost function, there exists a unique initial S that satisfies the

boundary conditions, which we denote by S(T2). Hence, if the initial resource stock

equals S(T2) it is optimal to start with q(T2) = q̂, to have limit pricing, but allowing for

a gradually increasing market share of renewables, to leave part of the resource stock

in the ground and to let extraction go to zero. For a smaller stock there will still be

limit pricing from the start, but initial extraction will be below q̂. If the initial stock is

smaller than the solution to (13) no extraction will take place at all. For a larger initial

stock, there will be an initial phase with limit pricing, where the monopoly serves the

entire market.

Finally, we derive the critical stock S(T1) for which this optimum prevails, meaning

that for a higher stock than S(T1), the initial price is below the limit price. To find the
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threshold we have to consider the following system of equations:

e−rT1(p′(q̂)q̂ + b̂− Cq(S(T1), q̂)) = λ(T1), (A.5a)

λ̇(t) = e−rtCS(S(t), q̂), T1 < t < T2, (A.5b)

Ṡ(t) = − q̂, T1 < t < T2. (A.5c)

Condition (A.5a) says that with an initial stock larger than S(T1) there will be no limit

pricing at T1. Note that for a given S(T1) we know λ(T1) (since we can put T1 = 0).

We know S(T2) from (A.4a)-(A.4e). Under the conditions that we have imposed on

the extraction cost function, there exists a unique initial λ(T2)erT2 that satisfies (A.5a)-

(A.5c) for the given S(T1) and S(T2). So, we need to find the S(T1) that yields the

λ(T2)erT2 obtained from (A.4a).

A.3 Imperfect substitution

The Hamiltonian H associated with the profit maximization problem of the monopolist

reads

H(q, λ, t) = e−rt(p(q)− k)q + λ[−q],

As before, λ denotes the shadow price of unextracted fossil fuel. According to the

Maximum Principle, the necessary condition reads

e−rt (p(q) + p′(q)q − k) = λ(t). (A.6)

Along the optimal path, the evolution of the shadow price satisfies

−λ̇(t) = 0. (A.7)

Furthermore, the transversality condition is given by

lim
t→∞

λ(t)S(t) = 0. (A.8)
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